Abstract

Background: Electrical trees can affect the distribution of electric field and space charge in cross-linked polyethylene (XLPE) cables, and play an important role in insulation aging and breakdown of cables. Therefore, it is important to study the influence of electrical trees in cables. Methods: In this study, the finite element method of second-order tetrahedral element and electromagnetic theory method is used for calculation. A model of XLPE cable with three-dimensional electrical trees is taken as an example for calculation. Results: The results show that the longer the trunk length is, the greater the electric field intensity at the end of the branch is; the farther the electrical trees are from the insulation side of the high voltage, the more the electric field intensity of each location decreases. Conclusion: With the increase of the resistivity of the trees, the electric field intensity and charge density tend to be stable at the end of the tree.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.