Abstract

Ten dogs anesthetized with α-chloralose were prepared with platinum monopolar electrodes in the antrum, duodenum and jejunum to record myoelectrical activity and bipolar stimulating electrodes placed on distal cut end of both cervical vagi to apply electric stimulation. Blood samples were obtained from both portal and femoral veins before and after bilateral vagal stimulation was initiated while the myoelectric activity was recorded continuously. The stimulation parameters used were low frequency (9V, 5 cps, 0.5 ms) and high frequency stimulus (9V, 30 cps, 10 ms) for 10 min. During the stimulation, plasma motilin concentrations increased significantly in both portal and femoral veins with simultaneous increases in the spike activity. The increment in the motilin level of portal venous blood was more marked. In 7 dogs, high frequency stimulation was repeated while the animals received i.v. atropine, 100 μg/kg-hr. Atropinization completely blocked the increase in the motilin concentration in response to high frequency stimulus with a simultaneous inhibition of the spike activity. The study suggests strongly that the vagus nerve plays an important role on endogenous release of motilin through its cholinergic pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call