Abstract

The deflection angle Delta phi of charged signals in general charged spacetime in the strong deflection limit is analyzed in this work using a perturbative method generalized from the neutral signal case. The solved Delta phi naturally contains the finite distance effect and takes a quasi-power series form with a logarithmic divergence at the leading order. The coefficients of the series contain both the gravitational and electric contributions. Using the Reissner–Nordström spacetime as an example, we found that an electric repulsion (or attraction) tends to decrease (or increase) the critical impact parameter b_c. If the repulsion is strong enough, then b_c can shrink to zero and the critical particle sphere r_{0c} will disappear. These results are applied to the gravitational lensing of charge signal, from which we solved the image positions, their magnifications and time delays. It is found that in general, the electric repulsion (or attraction) will decrease (or increase) the image apparent angles, the black hole shadow sizes as well as their magnifications but increase (or decrease) the time delays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.