Abstract

A mathematical model of dc gas discharge plasma has been developed in order to determine the electric field strength at a substrate surface during plasmachemical deposition of carbon nanostructures. A numerical solution of the model equations has been obtained using the experimentally determined boundary conditions and model parameters. A comparison of the solution to experiment confirms the adequacy of the proposed mathematical model, which provides the electric field profiles and the electron and ion density distributions near the substrate surface. Estimations show that, for carbon nanostructures with a characteristic size of about 30 nm, the electric field strength at the surface is sufficiently high to provide for their directional growth along the field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.