Abstract
A correlation of the ferroelectric and photoluminescence response to the structural ordering of praseodymium doped (Na0.41K0.09Bi0.5)TiO3 has been investigated. It has been observed that the ferroelectric and photoluminescence response lacks one-to-one correlation. The ferroelectric response is generally driven by long-range polar ordering. On the contrary, photoluminescence response is concomitant to the local site symmetry around the praseodymium ion. The optimum ferroelectric response has been observed for 1.0 at. % praseodymium doped (Na0.41K0.09Bi0.5)TiO3, whereas for the sample with higher doping concentration, it diminishes gradually due to disruption of the long-range ordering. On the other hand, with the establishment of long-range ordering, no noticeable shift in the position and shape of the photoluminescence lines has been observed. However, a quenching in the photoluminescence intensity of the hypersensitive transitions (1D2 → 3H4) takes place, which has been associated with the modification in the local site symmetry. It has been argued that structural modification has an influence on the photoluminescence intensity but does not affect the energy levels of these transitions. The observed dielectric, piezoelectric, and photoluminescence response has been explained on the basis of the amphoteric nature of praseodymium in (Na0.41K0.09Bi0.5)TiO3.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.