Abstract

We investigate the unpinning of chemical spiral waves attached to obstacles in the Belousov–Zhabotinsky (BZ) reaction using a Circularly Polarized Electric Field (CPEF). The unpinning is quantified by measuring the angle at which the spiral leaves the obstacle. Previously, we had found that the wave can unpin when the electric field along the direction of the spiral is above a threshold value. When we apply a DC field, this condition can be satisfied for a range of spiral phases, which we call the unpinning window (UW). With a CPEF, this UW moves either along the direction of the spiral (co-rotating) or against the spiral (counter-rotating). We find that when the field is co-rotating, it can take several rotations of the spiral to get unpinned. With a counter-rotating field, the spiral always unpins during the first rotation. We analyze how unpinning with CPEF depends on the electric field’s relative speed, chirality, and strength using experiments and the Oregonator model. Our work helps to understand and control chemical waves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.