Abstract

The effect of a constant electric current on the migration of interstitial atoms dissolved in a crystal in the region of a tensile crack tip is estimated. The calculation takes into account plastic deformation that is produced in the vicinity of the crack tip in the loaded sample by dislocation motion in active slip planes of the crystal under the action of mechanically and electrically induced shear stresses, Joule heat release, the Thomson effect, and ponderomotive forces and allows for the effect of gas exchange near the crack edges on the evolution of the distribution of interstitial impurity atoms. The time dependence of the stress intensity factor is found for both the cases of the presence and absence of a constant electric current near the crack tip. Numerical calculations are performed for an α-Fe crystal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.