Abstract

ABSTRACTElastic stress arising from differences in lattice parameters between phases is known to alter both qualitatively and quantitatively the characteristics of phase equilibria in coherent systems. One important consequence of misfit or epitaxial strain is the possible existence of several linearly stable equilibrium states: For a given composition, temperature and applied stress, different combinations of volume fraction and corresponding phase compositions render the free energy of the system a minimum. Here, we examine how epitaxial stresses influence phase equilibria in a binary alloy when the system can select from three different phases. In particular, we show the existence of several equilibrium states with different combinations of phases that minimize the system free energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.