Abstract
Emulsion gels with low oil content have attracted increasing interests, and insoluble soybean fibers (ISFs) have been proven to be the potential natural emulsifying stabilizers for emulsion gels. In this work, the structure and characteristics of low-oil emulsion gels stabilized by egg white protein (EWP) and ISF were investigated via tuning interactions between EWP-ISF below, near, or above the isoelectric point (pI) of EWP. EWP was adsorbed onto ISF matrix via electrostatic attraction and hydrogen bonding as EWP-ISF ratio changed from 1:0 to 1:2 below the pI (pH 3.2), resulting in a 3.52 mg/mL decrease in soluble EWP content. EWP-ISF synergistically adsorbed onto the oil-water interface, and the droplets were incorporated into gel matrix via hydrophobic interaction, improving the water-binding capacity and gel structure. The addition of ISF could still improve the gel structure at pH 4.5 despite the weakened interactions of EWP-ISF. However, the competitive adsorption occurred above the pI (pH 7.0), with more ISFs participating in interfacial stabilization; simultaneously the interactions between droplet-gel matrix were weakened, resulting in a decreased gel strength. Overall, ISF improved structural properties of low-oil emulsion gels, which exhibited a higher water-binding capacity and gel strength (14.9 g) at pH 3.2 and EWP-ISF ratio of 1:2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.