Abstract

Objective. For the multislice CT (MSCT) systems with a larger number of detector rows, it is essential to employ dose-reduction techniques. As reported in previous studies, edge-preserving adaptive image filters, which selectively eliminate only the noise elements that are increased when the radiation dose is reduced without affecting the sharpness of images, have been developed. In the present study, we employed receiver operating characteristic (ROC) analysis to assess the effects of the quantum denoising system (QDS), which is an edge-preserving adaptive filter that we have developed, on low-contrast resolution, and to evaluate to what degree the radiation dose can be reduced while maintaining acceptable low-contrast resolution. Materials and Methods. The low-contrast phantoms (Catphan 412) were scanned at various tube current settings, and ROC analysis was then performed for the groups of images obtained with/without the use of QDS at each tube current to determine whether or not a target could be identified. The tube current settings for which the area under the ROC curve (Az value) was approximately 0.7 were determined for both groups of images with/without the use of QDS. Then, the radiation dose reduction ratio when QDS was used was calculated by converting the determined tube current to the radiation dose. Results. The use of the QDS edge-preserving adaptive image filter allowed the radiation dose to be reduced by up to 38%. Conclusion. The QDS was found to be useful for reducing the radiation dose without affecting the low-contrast resolution in MSCT studies.

Highlights

  • Compared with conventional X-ray CT systems, the time required for scanning various anatomical regions with various slice thicknesses has been markedly reduced due to the introduction of multislice CT (MSCT) systems with a larger number of detector rows

  • These results show that the mean Az values just exceeding 0.7 were 0.730 for images obtained at 140 mA without quantum denoising system (QDS) and 0.759 for images obtained at 90 mA with QDS

  • The results showed that for the target with a diameter of 2 mm, the low-contrast resolution at 27.8 mGy with the use of QDS was equivalent to that at 44.5 mGy without the use of QDS, corresponding to a dose reduction ratio of 38%

Read more

Summary

Introduction

Compared with conventional X-ray CT systems, the time required for scanning various anatomical regions with various slice thicknesses has been markedly reduced due to the introduction of multislice CT (MSCT) systems with a larger number of detector rows. Since it is possible to scan a wide range with a thin slice thickness during a single breath-hold, there has been an increasing concern regarding the higher radiation doses in a wide range of clinical applications. A lowpass filter processing can reduce image noise, but the edges of objects become less clear and the sharpness of images is reduced. To address these issues, the development of edge-preserving adaptive

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call