Abstract
This study explores the potential of zeolite as an amendment to mitigate ammonium inhibition in the anaerobic digestion of swine waste. Two 50 L reactors, one with and one without zeolite amendment were operated at an OLR of 3.0 g VS L−1d−1 for 130 days, and fed with swine waste from a full-scale pig farm. Under these conditions, zeolite doses of 4 g L−1 allowed total ammonia nitrogen (TAN) concentrations to be kept below 1000 mgNH3-N L−1. The zeolite-amended reactor not only showed an average increase of 8% in methane production under stable conditions but also exhibited 34% reduction in H2S concentrations in the biogas, compared to the reactor without zeolite. The community of archaea originating from the inoculum was conserved in the reactor with zeolite amendment, particularly the acetoclastic methanogens of the genus Methanosaeta. On the other hand, in the reactor without zeolite addition, the microbial community went from being dominated by the acetoclastic methanogen Methanosaeta to having a high relative abundance of hydrogenotrophic methanogens. The zeolite addition also favoured the reactor stability, prevented foaming, and produced an enriched natural zeolite with N, P and K. However, additional studies on the potential of enriched zeolite as a fertilizer are required, which could make the use of zeolite in Anaerobic Digestion of swine waste not only energetically favourable but also economically feasible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.