Abstract
The non-uniformly distributed wheel loads in orthotropic bridge decks will cause its lower components to be eccentrically loaded. By conducting numerical simulation, field measurement and fatigue tests of diaphragm-to-rib welded joints (DU), the crack-growth characteristics under eccentric loading were analyzed and compared with that under symmetric loading, through which the warning crack length for maintenance and an evaluating method for crack-growth rates were proposed. The result demonstrates that the eccentrically loaded side (ES) of DU will crack ahead of non-eccentric side (NES) with a larger growth angle. The crack performs the same three-stage features of fast-slow-rapid growth under eccentric loading with demarcations of 27 mm and 70 mm, which are obviously larger than that under symmetric loading. The weld toe on NES will be particularly prone to fatigue cracking once the crack on ES enters the third rapid-growth stage. The new initiated crack on NES will own the same growth rate as ES. The demarcation 70 mm shall be taken as the warning length for crack maintenance to avoid cracking on the other side. It is appliable to evaluate the crack-growth rate of DU by Paris formula and the maximum stress intensity factor obtained by K I and K II of mixed mode cracks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.