Abstract

An energy-based solution is developed for the lateral torsional buckling (LTB) analysis of wooden beams with flexible mid-span lateral bracing offset from section mid-height and subjected to uniformly distributed or mid-span point load. The study shows that such beams are prone to two potential buckling modes; symmetric or anti-symmetric. The symmetric mode is shown to govern the capacity of the beam for low bracing stiffness while the anti-symmetric mode governs the capacity when the bracing stiffness exceeds a threshold value. Using the present formulation, the threshold bracing stiffness required to suppress the symmetric mode and maximize the critical moments is directly obtained by solving a special eigenvalue problem in the unknown bracing stiffness. The technique thus eliminates the need for trial and error in standard solutions. A parametric study is conducted to investigate the effect of bracing height, load height, and bracing stiffness on the critical moments. A large database of runs is generated and used to develop simple expressions for determining the threshold bracing stiffness required to maximize the elastic LTB resistance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.