Abstract

AbstractThe Australian cotton industry relies almost exclusively on synthetic insecticides for control of early season pests. These insecticides often disrupt predatory insect activity in the field. Potential predators of the twospotted spider mite, Tetranychus urticae Koch, in cotton, identified in field and confirmed in laboratory experiments, included a theridiid spider, a phytoseiid mite, a lacewing larva, predatory thrips, several Coccinellidae and several Hemiptera. These predators were mostly generalists, having previously been reported as predators of aphids or caterpillars of Helicoverpa spp. The effect of insecticides on T. urticae and its predators was evaluated in three field experiments. Cotton was artificially infested with T. urticae then sprayed five times at seven to ten day intervals with either dimethoate (140 g ai/ha), thiodicarb (750 g ai/ha and 187.5 g ai/ha), endosulfan (735 g ai/ha and 367.5 g ai/ha), methomyl (169 g ai/ha) or amitraz (400 g ai/ha). Tetranychus urticae populations reached higher densities in dimethoate, thiodicarb and methomyl treated cotton than in untreated cotton. Population densities of T. urticae in cotton treated with low rates of endosulfan or thiodicarb were similar to controls, while those in cotton treated with amitraz were lower. All insecticides caused significant reductions in at least one predator group. Significant negative relationships were found between early season abundance of predators and the mid-season abundance of T. urticae and positive relationships between predators and the lag-period for T. urticae outbreaks to develop. Predation is implicated as a key factor influencing the early season survival of T. urticae. The implications for developing integrated pest management strategies in cotton are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call