Abstract

The purpose of this study was to investigate the immediate and long-term effects of early feed restriction (ER) on morphology and gene expression of lateral gastrocnemius muscle. Newly hatched crossbred broiler chickens were allocated into control and ER groups, the latter being free-fed on alternate days from hatch to 14 days of age (14 d), followed by ad libitum feeding as the control group until 63 d. The lateral gastrocnemius muscle was taken at 14 and 63 d, respectively for myofibre typing by both myosin ATPase staining and relative quantification of myosin heavy chain (MyHC) mRNA for slow-twitch (SM), red fast-twitch (FRM) and white fast-twitch (FWM) myofibres. The body weight and lateral gastrocnemius weight were significantly lower in the ER group, accompanied by significantly reduced serum triiodothyronine. The ER group exhibited significantly higher SM and FRM MyHC expression at 14 d, but lower SM expression at 63 d. Myosin ATPase staining revealed a similar pattern. The percentage of SM was higher at 14 d while lower at 63 d in the ER group. These morphological changes were accompanied by changes of mRNA expression for growth-related genes. The ER group expressed lower insulin-like growth factor I (IGF-I) and higher IGF-I receptor (IGF-IR) at 14 d, yet significantly increased growth hormone receptor and IGF-IR mRNA at 63 d. These results indicate that ER may delay the slow to fast myofibre conversion as an immediate effect, but would result in a lower percentage of slow fibres owing to compensatory growth in the long term, which involves changes of mRNA expression for the growth-related genes in the muscle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.