Abstract

Hyperspectral imaging has become an interesting area of research in remote sensing over the past thirty years. But the main hurdles in understanding and analyzing hyperspectral datasets are the high dimension and presence of noisy bands. This work proposes a dynamic mode decomposition (DMD)-based dimension reduction technique for hyperspectral images. The preliminary step is to denoise every band in a hyperspectral image using least square denoising, and the second stage is to apply DMD on hyperspectral images. In the third stage, the denoised and dimension reduced data is given to alternating direction method of multipliers (ADMMs) classifier for validation. The effectiveness of proposed method in selecting most informative bands is compared with standard dimension reduction algorithms like principal component analysis (PCA) and singular value decomposition (SVD) based on classification accuracies and signal-to-noise ratio (SNR). The results illuminate that the proposed DMD-based dimension reduction technique is comparable with the other dimension reduction algorithms in reducing redundancy in band information.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.