Abstract

Dye doping is a promising way to increase the spectral purity of polymer light-emitting diodes (LEDs). Here we analyze the frequency and field dependence of the complex admittance of Al–Ba–PPV–poly(3,4-ethylenedioxythiophene:polystyrene sulphonic acid)–indium tin oxide LEDs with and without dye. We compare the charge carrier mobilities of pristine and dye-doped double-carrier and hole-only (Au replacing Al–Ba) devices. Dye doping is shown to significantly influence the electron mobilities while the hole mobilities are left unchanged and thereby changing the carrier balance in a double carrier device towards that of a hole only device. The minimum in the LED capacitance as a function of voltage appears to be an excellent probe for the electron trapping phenomenon underlying the reduction of the mobility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.