Abstract
We studied the effect of the duty ratio, i.e., the ratio of hill width to pitch, of patterned diamondlike carbon (DLC) surfaces on Ar gas cluster ion beam (GCIB) planarization effect. The patterns of 40 nm depth were fabricated on Si substrates by electron beam lithography and CHF3 reactive-ion etching. The pitch of the line-and-space pattern was 300 nm and three duty ratios were adopted. Then, refilling materials were deposited to 50 nm thickness on the patterned substrates. The test samples were irradiated by Ar-GCIB and the resultant surface profiles were measured by atomic force microscopy. The acceleration energy for one cluster was 20 keV. The dose was set in the range from 5×1014 to 5×1016 ion/cm2. Although there was a difference in the dose, the patterns clearly disappeared upon irradiating GCIB. The reduction rate of the peak-to-valley height decreased as the width of the hill increased. We indicated that GCIB irradiation is effective for the planarization of patterned surfaces with various duty ratios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.