Abstract

Nano-structured surface and its ability to dual release of osteogenic and anti-inflammatory agents have a positive effect on the success of using titanium in orthopedic applications. For this purpose, TiO2 nanotubes (TNTs) were created via anodization method on Ti sheets and loaded by β-glycerophosphate (GP) and dexamethasone (DEX) as osteogenic and anti-inflammatory agents, respectively. They were coated with a polyvinyl alcohol (PVA) layer for controlling their releasing rate. The synthesized dual-release system was characterized by field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FTIR) analysis, XRD and UV-Vis techniques. The average diameter of TNTs was 84.182 nm. The presence of drugs in the system has been proven in the FTIR analysis. UV-Vis technique’s results show that the coated layer could control the release rate to improve the potential of the structures for supporting mineralization. Releasing of DEX was higher than GP and reached to a constant rate after 9 days. MTT test results confirmed the possibility of the surface designed Ti for bone regeneration purposes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.