Abstract

ABL tyrosine kinase inhibitors (TKIs) have demonstrated potency in the treatment of chronic myeloid leukemia (CML) patients. However, resistance to ABL TKIs can develop in CML patients due to BCR-ABL point mutations. Furthermore, CUDC-907 is an oral inhibitor of class I phosphoinositide 3-kinase (PI3K) as well as class I and II histone deacetylase (HDAC) enzymes. In this study, we evaluated the effect of combination therapy of CUDC-907 and ABL TKIs, using BCR-ABL-positive cell lines and primary samples. CUDC-907 treatment for 72h resulted in cell growth inhibition. Over the same period, an increase in histone acetylation and both caspase three and poly (ADP-ribose) polymerase (PARP) enzyme activity was observed. When ABL TKI treatment and CUDC-907 treatment were combined, significantly greater cytotoxicity was observed. Moreover, combined oral therapy with ponatinib (20mg/kg/day) and CUDC-907 (30mg/kg/day) greatly inhibited tumor growth compared to each drug alone. Lastly, CUDC-907 treatment also inhibited the growth of Ba/F3 ponatinib-resistant cells, K562 nilotinib-resistant cells, and T315I mutant primary samples. Taken together, our results indicate that administration of CUDC-907, a dual PI3K and HDAC inhibitor, may be an effective strategy against ABL TKI-resistant cells, including cells harboring the T315I mutation. Moreover, CUDC-907 may enhance the cytotoxic effects of ABL TKI when a combined treatment strategy is used against Philadelphia chromosome-positive leukemia cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call