Abstract

In the present study, the effects of an amphiphilic polymer, d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) on model surfactant monolayers dipalmitoylphosphatidylcholine (DPPC), a binary mixture of DPPC with palmitoyloleoyl phosphatidylglycerol (DPPC-POPG) 9:1 (w/w) and binary mixture of DPPC and oleic acid (DPPC-OA) were evaluated. The ability of TPGS to act as an antioxidant adjuvant for pulmonary surfactants was also evaluated. Compression isotherms of surfactant monolayers at 37 °C in a Langmuir-Blodgett trough showed that DPPC and DPPC:TPGS mixed monolayers (1:0.25-1:1, w/w) exhibited low minimum surface tensions (MST) of 1-2 mN/m. Similarly [DPPC:POPG (9:1, w/w)]:TPGS mixed films of 1:0.25-1:1 weight ratios reached 1-2 mN/m MST. DPPC:POPG:TPGS liposomes adsorbed to surface tensions of 29-31 mN/m within 1s. While monolayers of DPPC:OA (1:1, w/w) reached high MST of ∼11 mN/m, DPPC:OA:TPGS (1:1:0.25, w/w) film reached near zero MST suggesting that low concentrations of TPGS reverses the effect of OA on DPPC monolayer. Capillary surfactometer studies showed DPPC:TPGS and [DPPC:POPG (9:1, w/w)]:TPGS liposomes maintained 84-95% airway patency. Fluorescence spectroscopy of Laurdan loaded DPPC:TPGS and DPPC:POPG:TPGS liposomes revealed no segregation of lipid domains in the lipid bilayer. Addition of TPGS to soybean liposome significantly reduced thiobarbituric acid reactive substance (TBARS) by 29-39% confirming its antioxidant nature. The results suggest a potential use of TPGS as an adjuvant to improve the surfactant activity as well as act as an antioxidant by scavenging free radicals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call