Abstract

This study employs the Leave-One-Out cross-validation approach to build a machine-learning model using polynomial regression to predict pyro product yield through microwave-assisted pyrolysis of sawdust over KOH catalyst and graphite powder a susceptor. The determination of coefficient (R2) validates the developed models. All the developed models achieved a high prediction accuracy with R2 > 0.93, which signifies that the experimental values are in good agreement with the predicted one. The dependence of the catalyst loading and pretreatment temperature on dominating process parameters such as heating rate, pyrolysis temperature, susceptor thermal energy, and pyro products, namely bio-oil, biochar, and biogas, are explored. The yield of biochar is reduced; however, bio-oil and biogas are enhanced as the catalyst loading increased. On the other hand, increasing the temperature of pretreated sawdust decreased bio-oil and biogas yields while increasing biochar yields. Further, microwave conversion efficiency, and susceptor thermal energy increased with increased catalyst quantity and pretreatment temperatures of sawdust. It was observed that the average heating rate was increased by increasing the catalyst quantity while maintaining the same pyrolysis time until pretreatment temperatures of 150 °C were reached, after which the heating rate dropped due to the continuous microwave energy input to the system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call