Abstract

In this study, the molecular state of ritonavir (RTN)-saccharin (SAC) coamorphous incorporated into mesoporous silica by solvent evaporation and the effect of SAC on the RTN dissolution from mesopores were investigated. The amorphization of RTN-SAC was confirmed as a halo pattern in powder X-ray diffraction measurements and a single glass transition event in the modulated differential scanning calorimetry (MDSC) curve. 13C solid-state NMR spectroscopy revealed a hydrogen bond between the thiazole nitrogen of RTN and the amine proton of SAC. The glass transition of the RTN-SAC coamorphous in mesoporous silica was not found in the MDSC curve, indicating that RTN and SAC were monomolecularly incorporated into the mesopores. Solid-state NMR measurements suggested that the co-incorporation of SAC into the mesopores decreased the local mobility of the thiazole group of RTN via hydrogen bond formation. The RTN-SAC 1:1 coamorphous in mesoporous silica retained the X-ray halo-patterns after 30 d of storage, even under high temperature and humidity conditions. In the dissolution test, the RTN-SAC 1:1 coamorphous in mesoporous silica maintained RTN supersaturation for a longer time than the RTN amorphous in mesoporous silica. This study demonstrated that the drug-coformer interaction within mesoporous silica can significantly improve drug dissolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.