Abstract

Decline of Senegalia senegal (Acacia senegal) in its natural range has been observed and attributed mainly to harsh environmental conditions such as frequent drought occurrences. The objective of this study is to assess the effect of water stress on growth, biomass allocation and photosynthetic capacity in Senegalia senegal seedlings. Seeds were collected from seven provenances in Senegal and grown under greenhouse conditions in a randomized complete block design with 5 replications. Seedlings were subjected to three cyclic droughts by watering them when average soil moisture content dropped to 4.7%, 2.7%, and 2.1% during the first, second, and third dry down cycles, respectively. With the exception of net photosynthetic rate, stomatal conductance and transpiration at the second and third dry down cycles, no drought by provenance interaction was found for any trait measured. Ngane provenance had a lower root/shoot ratio and allometric analysis revealed that Ngane allocated less biomass to roots than shoots. Ngane developed superior growth traits and biomass production, despite similar net photosynthetic rate with other provenances before treatments started. Overall, drought stress significantly reduced biomass, stem height, diameter and leaf gas exchange. Total biomass was reduced by 28.5%, whereas root/shoot ratio was increased by 25% compared to control. Significant interaction on leaf gas exchanges at the second and third dry down cycles reveals different sensitivity levels to drought among provenances with the Ranerou provenance exhibiting no decline in leaf gas exchange. No significant difference of stomatal limitation among genotypes was found, which is indicative of the complex process of photosynthesis and the need for extended times scales for measurements to better depict physiological sensitivity of Senegalia senegal to drought.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.