Abstract
Effects of mild and severe soil drought on the water status of needles, chlorophyll a fluorescence, shoot electrical admittance, and concentrations of photosynthetic pigments in needles of seedlings of Picea abies (L.) Karst. were examined under controlled greenhouse conditions. Drought stress reduced shoot admittance linearly with a decrease in shoot water potential (Ψw) and increase in water deficit (WD) and led to a decrease in concentrations of chlorophyll a, b and carotenoids. Severe water stress (shoot Ψw=−2.4 MPa) had a negative effect on chlorophyll a fluorescence parameters including PSII activity (Fv/Fm), and the vitality index (Rfd). Variations in these parameters suggest an inhibition of the photosynthetic electron transport in spruce needles. Water stress led to a decrease in the mobility of electrolytes in tissues, which was reflected by decreased shoot electrical admittance. After re-watering for 21 days the WD in needles decreased and the shoot water potential increased. In the re-watered plants, the chloroplast function was restored and chlorophyll a fluorescence returned to a similar level as in the control plants. This improved hydraulic adjustment in the seedlings triggered a positive effect on ion flow in the tissues and increased shoot electrical admittance. We conclude that the shoot electrical admittance and photosynthetic electron transport in leaves are closely linked to changes in water status and their decrease is among the initial responses of seedlings to water stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.