Abstract

ABSTRACTThe effect of drought preconditioning before anthesis and post-anthesis waterlogging on water relation, photosynthesis, and growth was studied in tomatoes. Tomatoes were grown in pots and exposed to four treatments, whereby the plants were irrigated to 80% field capacity in T1 (control) and T2, 70% of the control (T3), and 50% of the control (T4). Drought was maintained for 30 days from 14 days after transplanting (DAT), and then the plants under T2, T3, and T4 were subjected to waterlogging at 60 and 80 DAT and lasted for 2 days. The results showed that drought pretreatments induced a decrease in leaf water potential, leaf insertion angle, photosynthetic rate, and transpiration rate. The stomatal closure and epinasty observed in response to drought pretreatment represented adaptive mechanisms to the followed waterlogging. The soil redox potential, photosynthetic rate, stomatal conductance, and transpiration rate of un-pretreatment were dramatically decreased by post-anthesis waterlogging; however, T3 was found to effectively enhance tolerance to a waterlogging event by decreasing leaf insertion angle and increasing photosynthetic rate, stomatal conductance, and transpiration rate. Fruit quality and yield were deteriorated considerably by waterlogging. However, T3 caused less damage to fruit quality and yield by post-anthesis waterlogging compared to T2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call