Abstract

AbstractIn this work, binary and ternary nanocomposite systems based on nylon 6 with montmorillonite (MMT), polyhedral oligomeric silsesquioxane (POSS), and their combination were prepared using a melt‐compounding process. In the transmission electron microscope (TEM) images, the MMT was found to be generally well dispersed in all materials resulting in its good chemical compatibility with nylon 6, affording intercalated disordered microstructures. On the other hand, the TEM images showed that POSS formed micron‐size crystalline agglomerates possibly resulting from a lack in chemical compatibility with nylon 6. These nanocomposite systems were melt‐spun into fibers, and the relevant structure–property relationships that occur during the cold drawing process was established by correlating the tensile properties to the changes in crystallinity, polymorphic crystal forms, and molecular orientation. The properties of the resulting fibers were found to be rather skewed and significantly affected by the polymer/nanoparticles interface. The agglomeration of POSS and POSS–MMT particles coupled with the weak nylon 6/POSS interface, reflected on the tensile properties of the nylon 6/POSS and nylon 6/MMT‐POSS fibers which underperformed. Some nanocomposite fiber systems offered significant improvements in modulus without excessively compromising the extensibility of the fibers. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call