Abstract

Random telegraph noise (RTN), which occurs in in-pixel source follower (SF) transistors, has become one of the most critical problems in high-sensitivity CMOS image sensors (CIS) because it is a limiting factor of dark random noise. In this paper, the behaviors of RTN toward changes in SF drain current conditions were analyzed using a low-noise array test circuit measurement system with a floor noise of 35 µVrms. In addition to statistical analysis by measuring a large number of transistors (18048 transistors), we also analyzed the behaviors of RTN parameters such as amplitude and time constants in the individual transistors. It is demonstrated that the appearance probability of RTN becomes small under a small drain current condition, although large-amplitude RTN tends to appear in a very small number of cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call