Abstract

The effect of drag–reducing polymers on the rate of liquid – solid mass transfer in a packed bed reactor under forced convection conditions was studied by measuring the rate of diffusion–controlled dissolution of copper spheres in acidified chromate solutions. The variables investigated were superficial liquid velocity, sphere diameter, bed height, and polymer concentration. The mass transfer coefficient was found to increase with increasing superficial liquid velocity. Increasing both sphere diameter and bed height were found to decrease the mass transfer coefficient. Polymer addition was found to decrease the rate of mass transfer by an amount ranging from 29.2 to 56.9% depending on superficial liquid velocity and polymer concentration. Mass transfer data were correlated in absence and in the presence of drag–reducing polymer, using the following equations, respectively: Jd = 3.71Re–0.54 and, Jd = 2.5 Re–0.61where Jd is mass transfer J-factor and Re is the Reynolds number.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call