Abstract

In this study, cold metal transfer (CMT) based double-side welding process was employed to weld AA5052-H32 and AA6061-T6 plates having a thickness of 6 mm. The microstructure and mechanical integrity of the weldment was examined systematically. Symmetric and defect free joint with full penetration was achieved. The multiple heating and cooling cycles during CMT welding did not affect the weldment while the microstructure comprised of columnar and equiaxed dendrites and the heat affected zone (HAZ) width was < 50 µm at all interfaces. Precipitates such as Al3Mg2, Mg2Si, and α-Al(FeMn)Si were observed in the fusion zone. Intergranular Al-Si eutectic structure along with few microliquefaction cracks were noticed in the α-Al matrix. The maximum tensile properties for double-side welded joint were 214 MPa and 12.30 % with a joint efficiency of 70.68 %. Tensile specimens underwent ductile fracture in the weaker AA5052-H32 side with confined plastic deformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call