Abstract

Effect of double cross sectional ratio on performance characteristics of pulsating heat pipes is experimentally investigated. The cross sectional ratios in the evaporator and condenser sides are different from each other, and this novel gradually constricted geometry provides to boost flow circulation and to maintain a stable performance regardless of orientation. Tests are performed for different values of inclination angle (0°, 30°, 60° and 90°) and filling ratio (20, 40 and 60%). Also, results of originally structured closed loop flat plate pulsating heat pipe (novel design, ND) are compared with those of the conventional pulsating one with uniform cross section (conventional design, CD). Measurements are supported by high speed flow visualization. It is shown that the ND shows better thermal performance than the CD, and when appropriate filling ratio (40%) is provided, the ND presents orientation-independent running. A turn of the ND is divided into three different zones, and a pressure-balance equation is presented following a detailed flow analysis. Rapid bubble growth instability and annular flow pattern characterized by thin film evaporation are two important characteristics observed for the ND.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.