Abstract

This study examines the effects of the dose loss of phosphorus on the capacitance-voltage characteristics of an n-type polycrystalline silicon junctionless (JL) transistor using experimental, analytical and simulated analyses. It clearly demonstrates that the gate voltage increases as the doping concentration in the channel of the JL transistor decreases, maintaining constant capacitance because the depletion region is easily formed at the surface of the channel with a low doping concentration. The critical gate voltage (VGC) is defined as the applied gate voltage that induces the gate capacitance at the kink of the C-V curve. The simulated results clearly suggest that the critical gate voltage increases linearly with the percentage of dose loss of phosphorus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call