Abstract
Conventional and high resolution electron microscopy were used to study the structure of silicon-on-insulator material synthesized at higher temperature and higher current density (1 mA cm -2) than are conventionally used. As dose increases from 0.3 to 1.8×10 18 cm -2 the buried xide thickensto 0.3 microm and trails of bubbles from at the surface which increase in size to 14 nm and depth to 0.15 microm. The defect structure in the top Si layer, consisting of multiple stacking faults located only near the buried oxide interface, remains constant with dosage. During the early stages of annealing, the bubbles and the multiply faulted defects are eliminated and large (20–30 nm) precipitates with lateral dislocations form near the buried oxide interface. Increasing the temperature from 1250 to 1350°C, causes precipitates to grow and to incorporate into the oxide layer. The pinned dislocations are eliminated simultaneously with the incorporated precipitates. This results in a defect density of only 10 5 cm -2m which is three to four orders less than material implanted at lower temperatures and medium current density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.