Abstract
The experiments in high-voltage open discharge in helium [1, 2] showed a controlled current growth rate of 500 A/(cm2ns) for an applied voltage of 20 kV and gas pressure of 6 Torr. A kinetic model of the subnanosecond breakdown is developed to analyze the mechanism of current growth, which takes into account the kinetics of electrons, ions, fast atoms and photons with a Doppler shift (DS). DS photons appear in discharge due to collisions of heavy particles. Using particle in cell simulations, we show a critical role of DS photons in the electron emission from the cathode during the breakdown. Our experimental and calculation results show a decrease of the breakdown time with increasing gas pressure from 3 Torr to 16 Torr.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.