Abstract

A highly crystalline Bi0.4Sb1.6Te3 film was fabricated on a Si substrate by molecular beam epitaxy (MBE) at a substrate temperature of 280°C. On the basis of study of x-ray diffraction patterns and high-resolution transmission electron microscopy lattice fringes it was inferred that Bi atoms were successfully incorporated into Sb lattice sites, forming substituent Bi impurities. Reduction of the carrier concentration was ascribed to the increased resistance to formation of antisite defects when Sb was substituted by Bi. The reduced mobility was a result of enhanced grain boundary scattering and attraction by substituent Bi atoms. Analysis of temperature-dependent electrical transport properties revealed that introduction of Bi atoms resulted in deeper energy level impurities in the Bi0.4Sb1.6Te3 film and higher activation energy (43.2 meV) than the normal value at room temperature, leading to semiconductor characteristics of the film in the temperature range −50°C to 150°C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.