Abstract

This paper assesses the effects of Si doping on the properties of nonpolar m-plane GaN/AlGaN quantum wells (QWs) designed for intersubband (ISB) absorption in the far-infrared spectral range. For doping levels up to 3 × 1012 cm−2, structural analysis reveals uniform QWs with abrupt interfaces and no epitaxially induced defects. Cathodoluminescence spectroscopy confirms the homogeneity of the multiple QWs along the growth direction. Increasing the doping density in the QWs from 1 × 1011 cm−2 to 3 × 1012 cm−2 induces a broadening of the photoluminescence as well as a reduction of the exciton localization energy in the alloy. Also, enhancement of the ISB absorption is observed, along with a blue shift and widening of the absorption peak. The magnitude of the ISB absorption saturates for doping levels around 1 × 1012 cm−2, and the blue shift and broadening increase less than theoretically predicted for the samples with higher doping levels. This is explained by the presence of free carriers in the excited electron level due to the increase of the Fermi level energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.