Abstract

Synchrotron white beam x-ray topography studies carried out on 4H-SiC wafers characterized by locally varying doping concentrations reveals the presence of overlapping Shockley stacking faults generated from residual surface scratches in regions of higher doping concentrations after the wafers have been subjected to heat treatment. The stacking faults are rhombus-shaped and bound by Shockley partial dislocations. The fault generation process is driven by the fact that in regions of higher doping concentrations, a faulted crystal containing double Shockley faults is more stable␣than a perfect 4H-SiC crystal at the high temperatures (>1000°C) that the wafers are subject to during heat treatment. We have developed a model for the formation mechanism of the rhombus-shaped stacking faults. Our studies show that during heat treatment of the wafer, such double Shockley faults can be generated in regions where dislocation sources are presents (e.g. scratches or low-angle boundaries) and when the nitrogen doping concentration exceeds a certain level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.