Abstract
Based on analytical consideration and numerical simulations, it is shown how the mutually adjusted doping and stoichiometric profile results in improved frequency response and current gain in Si1−xGex-based heterojunction bipolar transistor. The closed-form expressions are derived for the dopant distribution within a certain mobility model which is parametrized in terms of the impurity concentration and stoichiometric grading on the same footing. With proper parametrization of the mobility, the method is suitable in both limits of high alloy scattering/low crystal ordering and low alloy scattering/highly ordered stoichiometrically graded structure. The work is corroborated by device simulations of a single-side HBT 30% stoichiometrically graded base, with detailed IV-curve, Gummel and AC analysis. It is shown that the distinct impurity distribution results in a reduced space-charge region, contributes to an effective electric field assisting the diffusion of the minority carriers and results in the saturation current density increased by 50%, the AC gain increased by 90%, the four-fold increase of the DC current gain, and improves the transition frequency from 274 to 358 GHz as compared to the case of the uniformly distributed acceptors. The obtained results may serve as a practical guide in design of highly-graded heterojunction bipolar transistors with efficient frequency response, high gain and enhanced power.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.