Abstract

Methods of electrochemical impedance, voltammetry, and ion transport numbers are used to study bipolar membranes that contain hydroxides of transition metals on the bipolar boundary. It is shown that the introduction of hydroxides significantly increases the rate of water dissociation in bipolar membranes, and the catalytic activity of transition metal compounds depends on the nature of the metal. It was found that the pseudounimolecular rate constants of the rate-limiting steps of dissociation calculated from the thermodynamic and kinetic data are two orders of magnitude higher than the effective constants derived from experiment. This suggests that only a small fraction of the surface of metal hydroxide particles is in the space-charge region (bipolar region), in which the dissociation of water molecules occurs in high-intensity electric fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.