Abstract

In the combustor inlet diffuser section of gas turbine engine, high-velocity air from compressor flows into the diffuser, where a considerable portion of the inlet velocity head PT3 − PS3 is converted to static pressure (PS) before the airflow enters the combustor. Modern high through-flow turbine engine compressors are highly loaded and usually have high inlet Mach numbers. With high compressor exit Mach numbers, the velocity head at the compressor exit station may be as high as 10% of the total pressure. The function of the diffuser is to recover a large proportion of this energy. Otherwise, the resulting higher total pressure loss would result in a significantly higher level of engine specific fuel consumption. The diffuser performance must also be sensitive to inlet velocity profiles and geometrical variations of the combustor relative to the location of the pre-diffuser exit flow path. Low diffuser pressure losses with high Mach numbers are more rapidly achieved with increasing length. However, diffuser length must be short to minimize engine length and weight. A good diffuser design should have a well considered balance between the confliction requirements for low pressure losses and short engine lengths. The present paper describes the effect of divergence angle on diffuser performance for gas turbine combustion chamber using Computational Fluid Dynamic Approach. The flow through the diffuser is numerically solved for divergence angles ranging from 5 to 25°. The flow separation and formation of wake regions are studied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call