Abstract

To investigate the effect of different disturbances in the upstream, we present numerical simulation of transition for a hypersonic boundary layer on a 5-degree half-angle blunt cone in a freestream with Mach number 6 at 1-degree angle of attack. Evolution of small disturbances is simulated to compare with the linear stability theory (LST), indicating that LST can provide a good prediction on the growth rate of the disturbance. The effect of different disturbances on transition is investigated. Transition onset distributions along the azimuthal direction are obtained with two groups of disturbances of different frequencies. It shows that transition onset is relevant to frequencies and amplitudes of the disturbances at the inlet, and is decided by the amplitudes of most unstable waves at the inlet. According to the characteristics of environmental disturbances in most wind tunnels, we explain why transition occurs leeside-forward and windside-aft over a circular cone at an angle of attack. Moreover, the indentation phenomenon in the transition curve on the leeward is also revealed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call