Abstract
In this work, we report the experimental and numerical study of second harmonic generation (SHG) from Si-surface with randomly distributed Au-nanorods. The dependence of plasmonic resonance frequency was studied numerically for the gold nanorod-silicon dioxide-silicon substrate system as a function of nanorod sizes and dioxide film thickness. The numerical results demonstrate a high sensitivity of plasmonic resonance on the silicon dioxide thickness at the range up to 6 nm. We measured experimentally the dependencies of second harmonic signal as functions of the polarization angle of the pump beam from randomly distributed Au-nanorods on the Si-surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.