Abstract

A rapid recombinant human thyroid (hTR) gene yeast bioassay was used to evaluate the effect of dissolved humic acid on thyroid receptor antagonistic activity of ZnCl2.The concentration of bio-available zinc after its reaction with dissolved humic acids was measured by anodic stripping voltammetry (ASV).Furthermore,the reaction mechanism of humic acid and zinc was investigated by three-dimensional excitation-emission matrix fluorescence spectroscopy (3DEEM).The results revealed that ZnCl2 demonstrated strong thyroid receptor antagonistic activity,and the concentration inhibiting 20% of the maximum effect of ZnCl2 was 1.70×10-5 mol·L-1.The thyroid receptor antagonistic activity of ZnCl2 was reduced by 30%-50% after the reaction of dissolved humic acids.The results of ASV showed that the concentration of bio-available zinc was decreased after the reaction of dissolved humic acids,the result was similar to that of bioassay test.The thyroid receptor antagonistic activity of the mixed solution of humic acid and ZnCl2 was increased after UV radiation treatment,however it was still lower than the antagonistic activity induced by ZnCl2.The results of 3DEEM showed that ZnCl2 could reduce the fluorescence peak intensity of humic acid,which could intuitively characterize the interaction between humic acid and ZnCl2.The above results can provide basic data and theoretical support for zinc toxicity study in aquatic environment and the establishment of water quality criteria for znic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.