Abstract

Capturing carbon dioxide (CO(2)) emissions from industrial sources and injecting the emissions deep underground in geologic formations is one method being considered to control CO(2) concentrations in the atmosphere. Sequestering CO(2) underground has its own set of environmental risks, including the potential migration of CO(2) out of the storage reservoir and resulting acidification and release of trace constituents in shallow groundwater. A field study involving the controlled release of groundwater containing dissolved CO(2) was initiated to investigate potential groundwater impacts. Dissolution of CO(2) in the groundwater resulted in a sustained and easily detected decrease of ~3 pH units. Several trace constituents, including As and Pb, remained below their respective detections limits and/or at background levels. Other constituents (Ba, Ca, Cr, Sr, Mg, Mn, and Fe) displayed a pulse response, consisting of an initial increase in concentration followed by either a return to background levels or slightly greater than background. This suggests a fast-release mechanism (desorption, exchange, and/or fast dissolution of small finite amounts of metals) concomitant in some cases with a slower release potentially involving different solid phases or mechanisms. Inorganic constituents regulated by the U.S. Environmental Protection Agency remained below their respective maximum contaminant levels throughout the experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.