Abstract

A type of grafted carbon black (GCB), prepared with a low molecular weight antioxidant compound by in-situ reaction, was dispersed in poly(ethylene terephthalate) (PET) by a melt-blending process. Dispersion of fillers, volume resistivity, and thermal properties were investigated using scanning electron microscopy, a high-resistance meter, differential scanning calorimetry, and thermogravimetric analysis, respectively. The results show that, compared with carbon black (CB) particles, GCB particles dispersed better in the PET matrix, whereas the conductivity percolation threshold of PET/GCB was higher than that of PET/CB. The addition of GCB or CB elevated the cold crystallization temperature of PET, reflecting the effectiveness of carbon fillers as nucleating agents. But carbon fillers decreased the crystallization enthalpy of PET during both heating and cooling process. Both CB and GCB elevated the starting temperature of thermal degradation of PET and increased the amount of residues for the composites over that of neat PET.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call