Abstract

In the present study, dye-sensitized solar cells were fabricated using electrophoretically deposited layers of titanium dioxide nanoparticles from two common organic media, acetone and isopropanol. Characterization of the obtained layers by scanning electron microscope and atomic force microscope showed that a non-uniform porous layer was obtained in acetone; however, deposition from the titanium dioxide/isopropanol cell resulted in the formation of a relatively uniform microstructure. Ultraviolet–visible (UV–vis) spectra of adsorbed dye on the two layers show that more dye is loaded on the layer deposited in acetone. Current–voltage characteristics of the cells indicate that for the case of the cells made by the layer formed in acetone, the internal resistance of the cell is more than that of isopropanol medium which would decrease the efficiency of the cell. This difference was attributed to the reduction of effective surface area and also the loss of particles interconnection as a result of the presence of aggregates within the layer obtained in acetone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.