Abstract
Chloramination and chlorination contribute to the formation of N-nitrosodimethylamine and trihalomethanes, respectively, both of which are defined as disinfection by-products. To be able to select the most appropriate water treatment scheme, it is important to comparatively evaluate the formation of both of these disinfection by-products during the application of different disinfection methods. In this study, chlorination, chloramination and stepwise chloramination methods have been applied to surface water samples that have been spiked with known N-nitrosodimethylamine precursors. Experimental results showed that ranitidine can be an effective N-nitrosodimethylamine precursor in distilled water, when chloraminated with high concentrations (140 mg/L) for a long time (10 days), resulting in approximately 450 ng/L of N-nitrosodimethylamine. However, neither dimethylamine nor ranitidine leads to significant trihalomethanes or N-nitrosodimethylamine formation in lake water when chloramination is conducted with low concentration (2 mg/L) for 2 h. These results suggest that N-nitrosodimethylamine concentration measured in the effluent of the drinking water treatment plant may underestimate the N-nitrosodimethylamine concentration that will reach the consumers since chloramination reactions will continue in the distribution system. On the other hand, when only N-nitrosodimethylamine formation potential is used, it will overestimate the N-nitrosodimethylamine that might form in the distribution system due to high disinfectant concentration, high contact time and adjusted pH values used in the N-nitrosodimethylamine formation potential test.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Environmental Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.