Abstract

This article presents a new analysis to determine the variation in modal dynamic characteristics of bridge superstructures caused by hydrodynamic added mass (HAM) during progressive flooding. The natural frequency variations were numerically and experimentally extracted in various artificial flood stages that included dry conditions, semi-wet conditions, and fully wet conditions. Three-dimensional finite element modeling of both subscale and full-scale models were simulated through a coupled acoustic structural technique using Abaqus®. Experiments were performed exclusively on a subscale model at a flume laboratory to confirm the numerical simulations. Finally, an approach to quantify the directional HAM in the dominant axes of vibration was pursued using the concept of effective modal mass. It is shown that specific vibrating modes with the largest effective mass are strongly affected during artificial flood events and are identified as the dominant modes. Numerical simulation shows that large directional HAM is introduced on those dominant modes during flood events. For the full-scale representative bridge, the magnitude of the HAM along the first structural mode was estimated to be over 5.8 times the bridge’s structural modal effective mass. It is suggested that directional HAM should be included during the design of bridges over streamways that are prone to flooding in order to potentially be appended to the AASHTO code.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.