Abstract

The effects of variations in the heat treatment process of milk on its quality and flavor are inevitable. This study investigated the effect of direct steam injection and instantaneous ultra-high-temperature (DSI-IUHT, 143 °C, 1-2 s) sterilization on the physicochemical properties, whey protein denaturation (WPD) rate, and volatile compounds (VCs) of milk. The experiment compared raw milk as a control with high-temperature short-time (HTST, 75 °C 15 s and 85 °C 15 s) pasteurization and indirect ultra-high-temperature (IND-UHT, 143 °C, 3-4 s) sterilization. The results showed no significant differences (p > 0.05) in physical stability between milk samples with different heat treatments. The DSI-IUHT and IND-UHT milks presented smaller particle sizes (p < 0.05) and more concentrated distributions than the HTST milk. The apparent viscosity of the DSI-IUHT milk was significantly higher than the other samples (p < 0.05) and is consistent with the microrheological results. The WPD of DSI-IUHT milk was 27.52% lower than that of IND-UHT milk. Solid-phase microextraction (SPME) and solvent-assisted flavor evaporation (SAFE) were combined with the WPD rates to analyze the VCs, which were positively correlated with ketones, acids, and esters and negatively associated with alcohols, heterocycles, sulfur, and aldehydes. The DSI-IUHT samples exhibited a higher similarity to raw and HTST milk than the IND-UHT samples. In summary, DSI-IUHT was more successful in preserving the milk's quality due to its milder sterilization conditions compared to IND-UHT. This study provides excellent reference data for the application of DSI-IUHT treatment in milk processing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call