Abstract

BackgroundDipterinyl calcium pentahydrate (DCP) has previously been shown to inhibit MDA-MB-231 human breast cancer xenographs in nude mice in a manner correlated with increases in plasma IL-12 and IL-4 concentrations, and decreases in plasma IL-6 levels. DCP also inhibits indoleamine 2,3-dioxygenase (IDO), an immuno-inhibitory enzyme, in human PBMCs (Peripheral Blood Mononuclear Cells).MethodsIn the present study, DCP was administered per os, once daily for 14 days to hepatitis B virus (HBV) transgenic mice at 23, 7.3, and 2.3 mg/(kg d). Multivariate stepwise regression and MANOVA analyses, by gender and treatment, of liver HBV DNA and RNA measures, liver core and serum HBe antigen assays, serum cytokine/chemokine profiles, and IDO metabolite measurements were performed.ResultsDCP caused a significant dose-response reduction of log liver HBV DNA as measured by PCR in the female HBV mice. The gender dependence of the anti-HBV DNA activity was explained by the DCP Effects Model (DCP-EM) (p = .001) which includes three serum biomarker changes caused by DCP: 1) decreased MCP-1; 2) decreased Kyn/Trp (an estimation of IDO activity); and 3) increased GM-CSF.ConclusionsImmunomodulation via IDO or TDO (tryptophan 2,3-dioxygenase) pathways, along with serum MCP-1 and GM-CSF are proposed to play roles in the anti-HBV mechanism of DCP based upon their coordinated modulation in the reduction of viral DNA replication in HBV mice.

Highlights

  • Dipterinyl calcium pentahydrate (DCP) has previously been shown to inhibit MDA-MB-231 human breast cancer xenographs in nude mice in a manner correlated with increases in plasma IL-12 and IL-4 concentrations, and decreases in plasma IL-6 levels

  • The following viral, IDO, and cytokine/chemokine measures were collected in this study: liver hepatitis B virus (HBV) DNA (Southern), liver HBV DNA (PCR), liver HBV RNA (PCR), HBe antigen (ELISA); Average # hepatitis B core antigen (HBcAg) Nuclei, Average # HBcAg Cytoplasms, # HBcAg Nuclei per Quarter Field; serum Tryptophan, Kynurenine, Kyn/Trp, IL-1a, IL-1b, IL-2, IL-3, IL-4, IL-6, IL-9, IL-10, IL-12, MCP-1, TNF-a, MIP-1, GM-CSF, RANTES; and liver IL-6

  • The DCP Effects Model linear stepwise regression analysis identified a significant (p = .001) cluster of variables responding to the DCP treatment

Read more

Summary

Introduction

Dipterinyl calcium pentahydrate (DCP) has previously been shown to inhibit MDA-MB-231 human breast cancer xenographs in nude mice in a manner correlated with increases in plasma IL-12 and IL-4 concentrations, and decreases in plasma IL-6 levels. Dipterinyl calcium pentahydrate (DCP), shown, has demonstrated significant antitumor activity associated with plasma IL-12 concentration increases in MDA-MB231 (human breast cancer) xenographs in nude mice [3,4]. This finding, along with previous work demonstrating IL-12 suppression of HBV replication in transgenic mice [5], prompted us to investigate the activities of DCP in the HBV transgenic mouse model. The investigators anticipated that DCP might work via cytokine/chemokine modulatory mechanisms similar to those described by others [5,6,7,8,9]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.